

Wkręt-met KLIMAS

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 1. PRODUCT DESCRIPTION

Description

WCF-PESF, WCF-PESF-E, WCF-PESF-C is a low to medium performance level, cost effective, general purpose two-component (10:1 ratio), styrene-free chemical anchoring system with unsaturated polyester as chemical base, that has been formulated for anchoring in a wide variety of building materials. Ideal for standard DIY applications in uncracked concrete and masonry substrates.

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+5°C to +25°C) out of direct sunlight. When stored correctly, the product shelf life will be 12 months from the date of manufacture.

Base materials

- -Concrete
- -Solid and hollow masonry
- -Solid rock
- -Hard natural stone
- -Voided stone or rock
- Health & Safety

For health and safety information, please refer to the relevant Safety Data Sheet.

Features

-Anchors may be placed close to free edges.

-Suitable for dry, wet & flooded holes without loss of performance. -Reduced drilling diameters i.e 22mm for M20 and 26mm for M24; results in significant material and labour savings.

- -Variable embedment depths
- single piston foil pack cartridges (300 ml ; 410 ml)

Uses/Applications

-Canopies -Ventilation systems -Railings -Hand rails -Masonry supports -Signs -Safety barriers -Balcony fences -Racking

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2022-07-21 Updated: 2022-07-21

Accessories

-Applicators -Mixing nozzles -Cleaning blow pump -Cleaning brushes -Extension tubes -Resin stoppers -Plastic Sleeves Approvals & Tests

-ETA according to ETAG 001 -Part 1 and Part 5 , used as European Assessment Document (EAD) for uncracked concrete

-ETA according to ETAG 029, used as European Assessment Document (EAD) for metal injection anchors in masonry

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 2. WORKING & LOADING TIMES

PESF - Working & Loading Time	es		
Cartridge Temperature	T Work	Base Material Temperature	T Load
5°C	18 Minutes	5℃	145 Minutes
5°C to 10°C	10 Minutes	5°C to 10°C	145 Minutes
10°C to 20°C	6 Minutes	10°C to 20°C	85 Minutes
20°C to 25°C	5 Minutes	20°C to 25°C	50 Minutes
25°C to 30°C		25°C to 30°C	40 Minutes
30°C	4 Minutes	30°C	35 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

WCF-PESF-C - Working & Loading Ti	mes		
Cartridge Temperature	T Work	Base Material Temperature	T Load
5°C	E Málautas	-10°C to -5°C	4 hours
5°C	5 Minutes	-5°C to 5°C	125 Minutes
5°C to 10°C	3,5 Minutes	5°C to 10°C	60 Minutes
10°C to 20°C	2 Minutes	10°C to 20°C	40 Minutes
20°C to 25°C	1,5 Minutes	20°C to 25°C	20 Minutes
25°C 30°C	1	25°C 30°C	15 Minutes
30°C	1 Minute	30°C	10 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

PESF-E - Working & Loading Ti			T I I
Cartridge Temperature	T Work	Base Material Temperature	T Load
10°C	30 Minutes	10°C	
10°C to 20°C	15 Minutes	10°C to 20°C	5 hours
20°C to 25°C	10 Minutes	20°C to 25°C	145 Minutes
25°C to 30°C	7.5 Minutes	25°C to 30°C	85 Minutes
30°C to 35°C	5 minutes	30°C to 35°C	50 Minutes
35°C to 40°C	3.5 Minutes	35°C to 40°C	40 Minutes
40°C to 45°C	2.5 Minutes	40°C to 45°C	35 Minutes
45°C	2,5 Minutes	45°C	12 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

Section 3. PHYSICAL PROPERTIES

				Physical Properties
Property		Value	Unit	Test Standard
Density	1.7	g/cm ³	ASTM D 1875 @ +20°C	
Compressive Strength	24 hrs	60	N/mm ²	BS6319
Compressive Strength	7 days	70	N/mm-	B30314
Tensile Strength	24 hrs	11.5	N/mm ²	ASTM D 638 @ +20°C
	7 days	12.2	N/MM ⁻	
Elongation at Break	24 hrs	0.1	%	ASTM D 638 @ +20°C
LIONGALION AL DIEAK	7 days	0.1	/0	
Tensile Modulus	24 hrs	3.4	CN 1/m ²	ASTM D 638 @ +20°C
	7 days	4.5	GN/m ²	

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Flexural Strength	7 days	28.3	N/mm ²	ASTM D 790 @ +20°C
HDT	7 days	80.8	°C	ASTM D 648 @ +20°C

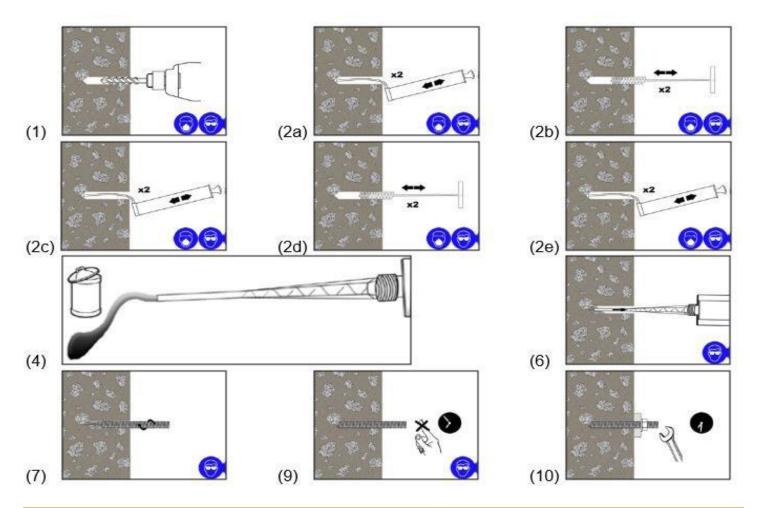
Section 4. CHEMICAL RESISTANCE

Chemical Resistance					
Chemical Environment	Concentration	Result	Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	\checkmark		10%	\checkmark
Acetone	100%	×	Hydrochloric Acid	15%	\checkmark
Aqueous Solution Aluminium Chloride	Saturated	\checkmark		20%	С
Aqueous Solution Aluminium Nitrate	10%	\checkmark	Hydrogen Sulphide Gas	100%	~
Ammonia Solution	5%	×	Isopropyl Alcohol	100%	×
Jet Fuel	100%	×	Linseed Oil	100%	\checkmark
Benzoic Acid	Saturated	✓	Lubricating Oil	100%	\checkmark
Sodium Hypochlorite Solution	5 - 15%	✓	Mineral Oil	100%	\checkmark
Butyl Alcohol	100%	С	Paraffin / Kerosene (Domestic)	100%	С
Calcium Sulphate Aqueous Solution	Saturated	\checkmark	Phenol	1%	×
Carbon Monoxide	Gas	\checkmark	Phosphoric Acid	50%	\checkmark
Carbon Tetrachloride	100%	С	Potassium Hydroxide	10% / pH13	С
Chlorine Water	Saturated	×	Sea Water	100%	С
Chloro Benzene	100%	×	Sulphur Dioxide Solution	10%	\checkmark
Citric Acid Aqueous Solution	Saturated	\checkmark	Sulphur Dioxide (40°C)	5%	\checkmark
Cyclohexanol	100%	\checkmark	Culaburia Asid	10%	\checkmark
Diesel Fuel	100%	\checkmark	– Sulphuric Acid	30%	\checkmark
Diethylene Glycol	100%	\checkmark	Turpentine	100%	С
Ethanol	95%	×	White Spirit	100%	\checkmark
Heptane	100%	С	Yulana	100%	
Hexane	100%	С	Xylene	100%	×

√ = Resistant to 75°C with at least 80% of physical properties retained. C = Contact only to a maximum of 25°C. 🗶 = Not resistant.

Section 5. SOLID SUBSTRATE INSTALLATION METHOD

Solid Substrate Installation Method


- 1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.
- Thoroughly clean the hole in the following sequence using a brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a blow pump may be used: Blow Clean x2 → Brush Clean x2 → Blow Clean x2 → Blow Clean x2.
 If the hole collects water, the current best practice is to remove standing water before cleaning the hole and injecting the
- resin. Ideally, the resin should be injected into a properly cleaned, dry hole. 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth
 - of the cartridge. Insert the cartridge into a good quality applicator.
- 4 Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.
- 6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- 8. Any exces resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Section 6. INSTALLATION PARAMETERS – THREADED RODS

Size			M8	M10	M12	M16	M20	M24	
5128				-			-		
Nominal Drill Hole Diameter	do	[mm]	10	12	14	18	22	26	
Diameter of Cleaning Brush	db	[mm]	14	14	20	20	29	29	
Torque Moment	T _{inst}	[Nm]	10	20	40	80	150	200	
h _{ef,min} = 8d									
Depth of drill hole	h₀	[mm]	64	80	96	128	160	192	
Minimum Edge Distance	C _{min}	[mm]	35	40	50	65	80	96	
Minimum Spacing	S _{min}	[mm]	35	40	50	65	80	96	
Minimum Member Thickness	h _{min}	[mm]		h _{ef} + 30	mm ≥ 100mr	n	h _{ef} + 2d _o		
h _{ef,max} = 12d									
Depth of drill hole	ho	[mm]	96	120	144	192	240	288	
Minimum Edge Distance	C _{min}	[mm]	50	60	70	95	120	145	
Minimum Spacing	S _{min}	[mm]	50	60	70	95	120	145	
Minimum Member Thickness	h _{min}	[mm]	•	hef + 30 i	mm ≥ 100 m	m	h _{ef}	+ 2d _o	

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 7. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS

Characteristic Resistan years	ce - Combined Pullout & Concrete (Cone Failu	ire Using T	hreaded	Rods for	working	life of 50)	
Size		-		M8	M10	M12	M16	M20	M24
Characteristic Bond Resist 80°C	ance in Uncracked Concrete, -40°C to	τ _{Rk,uncr}	N/mm ²	8.5	8.0	9.0	9.0	8.0	7.5
Partial Safety Factor	Dry Concrete Wet Concrete Flooded Holes	Υ _{Mp}	[-]			1	8		
			C30/37			1.	12		
Factor for Concrete		Ψc	C35/45			1.	19		
			C50/60			1.	30		

Section 8. SPLITTING FAILURE

Splitting Failure								
Size			M8	M10	M12	M16	M20	M24
Edge Distance	C _{cr,sp}	mm	2hef			1.5hef		
Spacing	S _{cr,sp}	mm	4hef				3hef	

Section 9. RESISTANCE VALUES FOR THREADED ROD IN UNCRACKED CONCRETE -50 YEARS WORKING LIFE

Resistance Values for Threaded Rod in Uncracked Concrete Combined Pullout & Concrete Cone Failure and Concrete Cone Failure Temperature Range: -40°C to 80°C Anchor Diameter Unit Property M8 M10 M12 M16 M20 M24 Effective Embedment Depth = MIN = 8d h_{ef} mm 64 80 96 128 160 192 kΝ 7.5 11.0 18.0 32.0 44.5 60.0 Design Resistance N_{Rd} \mathbf{h}_{ef} Effective Embedment Depth = 10d 80 100 120 160 200 240 mm Design Resistance N_{Rd} kΝ 9.0 13.5 22.5 40.0 55.5 75.0 Effective Embedment Depth = 12d 96 120 144 192 240 288 h_{ef} mm 11.0 16.5 27.0 48.0 67.0 90.0 Design Resistance N_{Rd} kΝ

1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for teal failure must also be considered, the lowest value controls

steel failure must also be considered - the lowest value controls.

2. Resistance values are for single anchors without close edges or eccentric loading considerations. The ratio of sustained tension loading is 0.

3. Tabulated values correspond to the above stated temperature range and installation conditions only.

4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

5. The compressive strength of the concrete ($f_{ck,cylinder}$) is assumed to be 20 N/mm².

6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 10. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (TENSION)

M8 M10 M12 M16 M20 M24					
123	177				
196	282				
1.50					
245	353				
172	247				
196	282				
1.60					
172	247				
1.50					
-	172				

*Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Section 11. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR – WITHOUT LEVER ARM)

Threaded Rods - Characteristic Values for S	teel Failure (Shear – with	nout lever	arm)					
Size			M8	M8 M10 M12 M16 M20				
Steel Grade 5.8	V _{Rk,s}	kN	9	15	21	39	61	88
Partial Safety Factor	Y _{Ms}	[-]			1.	25		
Steel Grade 8.8	V _{Rk,s}	kN	15	23	34	63	98	141
Partial Safety Factor	Y _{Ms}	[-]	1.25					
Steel Grade 10.9*	V _{Rk,s}	kN	18	29	42	79	123	177
Partial Safety Factor	Y _{Ms}	[-]			1.	50		
Stainless Steel Grade A4-70	V _{Rk,s}	kN	13	20	30	55	86	124
Partial Safety Factor	Y _{Ms}	[-]			1.	56		
Stainless Steel Grade A4-80	V _{Rk,s}	kN	15	23	34	63	98	141
Partial Safety Factor	Y _{Ms}	[-]	1.33					
Stainless Steel Grade 1.4529	V _{Rk,s}	kN	13	20	30	55	86	124
Partial Safety Factor	Y _{Ms}	[-]			1.	25		

*Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

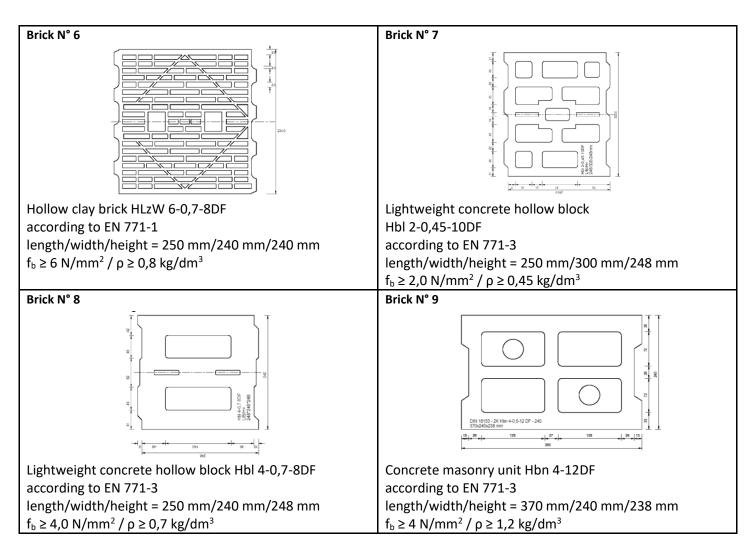
Section 12. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR – WITH LEVER ARM)

Threaded Rods - Characteristic Values for	Steel Failure (Shear – with	lever arn	n)					
Size			M8	M10	M12	M16	M20	M24
Steel Grade 5.8	M ⁰ _{Rk,s}	N.m	19	37	66	166	325	561
Partial Safety Factor	У _{Мs}	[-]	1.25					
Steel Grade 8.8	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898
Partial Safety Factor	У _{Мs}	[-]			1	.25		
Steel Grade 10.9*	M ⁰ _{Rk,s}	N.m	37	75	131	333	649	1123
Partial Safety Factor	У _{Мs}	[-]			1	.50		
Stainless Steel Grade A4-70	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786
Partial Safety Factor	У _{Мs}	[-]			1	.56		

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Stainless Steel Grade A4-80	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898
Partial Safety Factor	Y _{Ms}	[-]	1.33					
Stainless Steel Grade 1.4529	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786
Partial Safety Factor	γ_{Ms}	[-]	1.25					
Concrete pryout failure								
Factor k **			2					
Partial Safety Factor	,	Y _{Ms}	1.50					

*Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.


** K Value from TR029 Design of bonded anchors pt 5.2.3.3

Section 13. TYPES AND DIMENSIONS OF BLOCK AND BRICKS Brick N° 1 Brick N° 2 11 14 8.5 14 8.5 14 11 Hollow sand lime brick KSL 12-1,4-3DF Hollow clay brick HLz 12-1,0-2DF according to EN 771-2 according to EN 771-1 length/width/height = 240 mm/175 mm/113 mm length/width/height = 235 mm/112 mm/115 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1.4 \text{ kg/dm}^3$ $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1.0 \text{ kg/dm}^3$ Brick N° 3 Brick N° 4 Hollow sand lime brick KSL 12-1,4-8DF Solid clay brick Mz 12-2,0-NF according to EN 771-2 according to EN 771-1 length/width/height = 250 mm/240 mm/237 mm length/width/height = 240 mm/116 mm/71 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1.4 \text{ kg/dm}^3$ $f_b \ge 12 \text{ N/mm}^2 \text{ / } \rho \ge 2.0 \text{ kg/dm}^3$ Brick N° 5 Solid sand lime brick KS 12-2,0-NF according to EN 771-2 length/width/height = 240 mm/115 mm/70 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 2.0 \text{ kg/dm}^3$

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 14. INSTALLATION PARAMETERS IN SOLID AND HOLLOW MASONRY

nstallation parameters in solid and hollow masonry															
Anchor Type			Anchor Rod									Internal threaded socket			
Size		M8	M10	M12	N	/18	м	10	M12	M8		M10	M12		
Internal Threaded Socket	$d_{to} x I_t$	[mm]	-	-	-		-		-	-	- 12x80		14x80	16x80	
Sieve Sleeve	ls	[mm]	-	-	-	85 85		85	٤	85	85	85			
	ds	[mm]	-	-	-	15	16	15	16	20	15	16	20	20	
Nominal drill hole diameter	do	[mm]	15	15	20	15	16	15	16	20	15	16	20	20	
diameter of cleaning brush	d _b	[mm]	20 ^{±1}	20 ^{±1} 20 ^{±1} 22 ^{±1} 20 ^{±1} 20 ^{±1} 22 ^{±1}				20) ^{±1}	22 ^{±1}	22 ^{±1}				
depth of drill hole	h ₀	[mm]		90											
Effective anchorage depth	h _{ef}	[mm]		85 80											
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14		9	1	2	14	2	9	12	14	
Torque moment	T _{inst} ≤	[mm]		2											

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 15. EDGE DISTANCE AND SPACING IN SOLID OR HOLLOW MASONRY

Edge distances and spacing											
			Anc	hor rod							
		M8			M10			M12			
Base Material	C _{cr} =C _{min}	$S_{cr} \parallel = S_{min} \parallel$	$S_{cr} \perp = S_{min} \perp$	C _{cr} =C _{min}	S _{cr} = S _{min}	Scr⊥ = Smin⊥	Ccr=Cmin	S _{cr} = S _{min}	$S_{cr} \perp = S_{min} \perp$		
base material	mm	mm	mm	mm	mm	mm	mm	mm	mm		
Brick No 1	100	235	115	100	235	115	120	235	115		
Brick No 2	100	240	113	100	240	113	120	240	113		
Brick No 3	100	250	237	100	250	237	120	250	237		
Brick No 4	128	255	255	128	255	255	128	255	255		
Brick No 5	128	255	255	128	255	255	128	255	255		
Brick No 6	100	250	240	100	250	240	120	250	240		
Brick No 7	100	250	248	100	250	248	-	-	-		
Brick No 8	100	250	248	100	250	248	120	250	248		
Brick No 9	100	370	238	100	370	238	120	370	238		
			Internal Th	readed Socket							
		M8			M10			M12			
Base Material	C _{cr} =C _{min}	S _{cr} = S _{min}	$S_{cr} \perp = S_{min} \perp$	C _{cr} =C _{min}	S _{cr} = S _{min}	Scr⊥ = Smin⊥	Ccr=Cmin	S _{cr} = S _{min}	$S_{cr} \perp = S_{min} \perp$		
	mm	mm	mm	mm	mm	mm	mm	mm	mm		
Brick No 1	100	235	115	120	235	115	120	235	115		
Brick No 2	100	240	113	120	240	113	120	240	113		
Brick No 3	-	-	-	120	250	237	120	250	237		
Brick No 4	128	255	255	128	255	255	128	255	255		
Brick No 5	100	255	255	128	255	255	128	255	255		
Brick No 6	100	250	240	120	250	240	120	250	240		
Brick No 7	100	250	248	120	250	248	120	250	248		
Brick No 8	-	-	-	120	250	248	120	250	248		
Brick No 9	100	370	238	120	370	238	120	370	238		

Section 16. CHARACTERISTIC RESISTANCE UNDER TENSION AND SHEAR LOADING (SOLID AND HOLLOW MASONRY)

Characteristic resistance under tension and shear loading									
	Anchor Rods								
Base Material	M8	M10	M12						
	N _{RK} =V _{RK} [KN] ¹⁾	N _{RK} =V _{RK} [KN] ¹⁾	N _{RK} =V _{RK} [KN] ¹⁾						
Brick No 1	2.5	2.0	2.0						
Brick No 2	0.75	1.2	0.50						
Brick No 3	0.75	1.2	0.50						
Brick No 4	1.50	1.5	3.0						
Brick No 5	0.75	0.90	1.5						
Brick No 6	1.2	1.2	0.90						
Brick No 7	0.60	0.30	-						
Brick No 8	0.60	1.5	1.2						
Brick No 9	2.5	1.5	2.5						

1) For design according ETAG 029, Annex C: N_{Rk} = N_{Rk,p} = N_{Rk,p} = N_{Rk,p} according to ETAG 029, Annex C For V_{Rk,s} see

Annex C1, Table C2; Calculation of $V_{\text{Rk},\text{pb}}$ and $V_{\text{Rk},c}$ according to ETAG 029, Annex C

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Section 17. CHARACTERISTIC BENDING MOMENT (SOLID AND HOLLOW MASONRY)

Characteristic Bending Moment									
	Anchor Diameter								
Steel Grade	M8	M10	M12						
	M _{Rk,s}	M _{Rk,s}	M _{Rk,s}						
Steel Grade 5.8	19	37	66						
Steel Grade 8.8	30	60	105						
Steel Grade 10.9*	37	75	131						
Stainless Steel A2-70, A4-70	26	52	92						
Stainless Steel A4-80	30	60	105						
Stainless Steel 1.4529 strength class 70	26	52	92						
Stainless Steel 1.4565 strength class 70	26	52	92						

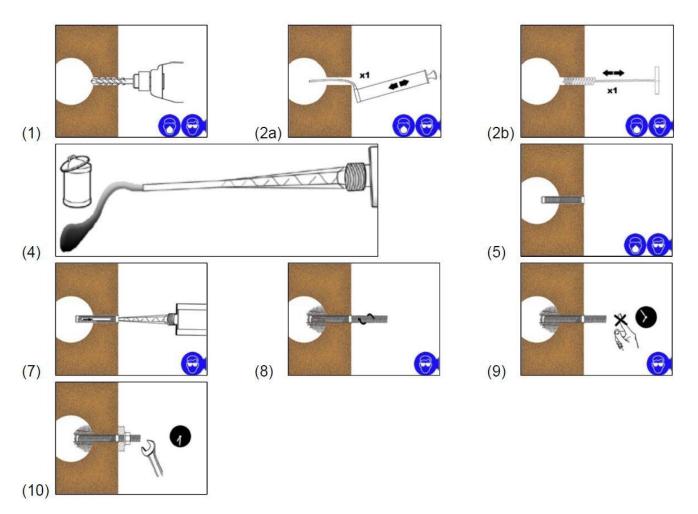
Section 18. DISPLACEMENTS UNDER TENSION AND SHEAR LOAD (SOLID AND HOLLOW MASONRY)

Displacements under tension and shear load										
Base Material	F (kN)	δ _{№0} [mm]	δ _№ [mm]	δ _{vo} [mm]	δ _{ν∞} [mm]					
Solid Bricks	N _{Rk} /(1.4 · χ _M)	0.6	1.2	1.0	1.5					
Perforated & Hollow Bricks	NRK/ (1.4 8M)	0.14	0.28	1.0	1.5					

Section 19. β – FACTORS FOR JOB SITE TEST ACCORDING TO TR053

β - Factors for Job Site Test According to TR053									
Brick No.	No 1	No 2	No 3	No 4	No 5	No 6	No 7	No.8	No.9
β - Factor	0.62	0.28	0.22	0.48	0.26	0.43	0.42	0.36	0.60

Section 20. HOLLOW MASONRY INSTALLATION METHOD


Hollow Masonry Installation Method

- 1. Drill the hole to the correct diameter and depth . This should be done with rotary percussion drilling machine to reduce spalling.
- 2. Thoroughly clean the hole in the following sequence using the Brush with the required extensions and a source of clean compressed air. For holes of 400 mm or less deep , a Blow Pump may be used: Brush Clean x1. Blow clean x1.
- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mount of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. Select the appropriate perforated sleeve and insert into the hole.
- 6. Insert the mixer nozzle to the bottom of the perforated sleeve, withdraw 2-3 mm then begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there is no air voids as the mixer nozzle is withdrawn. Fill the perforated sleeve and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- 8. Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mount of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time , has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

PRODUCT DATA SHEET – WCF-PESF/WCF-PESF-E/WCF-PESF-C

Note:

For solid masonry applications, please refer to 'Solid Substrate Installation Method'.

Section 21. IMPORTANT NOTES

Important Notes:

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.