

KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 3777 100, fax +48 34 328 01 73

DECLARACTION OF PERFORMANCE No 29/SZ/16

Unique identification code of the product-type: WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E

2. Intended use/es:

The field was feel		
Product	Intended use	
Metal injection anchors for use in masonry	Post-installed fastening in masonry unit, see appendix, especially Annexes B1 to B7	

3. Manufacturer: KLIMAS Sp. z o.o.

ul. Wincentego Witosa 135/137

Kuźnica Kiedrzyńska 42-233 Mykanów

4. Authorised representative: not applicable

System 1

6. European Assessment Document:

- a) The guidelines EAD ETAG 029, edition 2013
- b) European Technical Assessments ETA-16/0677 of 10/08/2016
- c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p.
- d) Identification number of notified body- 1020

7. Declared performance/s:

System/s of AVCP:

5.

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Reduction factor for job site tests (β – factor)	See appendix, especially Annex C 1	
Characteristic resistance for tension and shear loads	See appendix, especially Annex C 1	
Characteristic resistance for bending moments	See appendix, especially Annex C 1	
Displacement under shear and tension loads	See appendix, especially Annex C 1	
Edge distances and spacing	See appendix, especially Annex B 6	

Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Anchorages satisfy requirements for Class A1	
Resistance to fire	No performance assessed	

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

not applicable

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Kuźnica Kiedrzyńska 20.09.2017r. (place and date of issue) Adam Szczepanowski

Klerownik działu technicznego

Adam Szczepanowski * 415 -

(signature)

This declaration replaces the declaration from 20.09.2016.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Appendix 1/15

1. Technical description of the product

The WCF-PESF, WCF-PESF-C (faster curing time), WCF-PESF-S and WCF-PESF-E (extended curing time) for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with hexagon nut and washer or internal threaded socket. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod or the socket with internal thread is placed in the sieve sleeve. The installation of the anchor rod in solid masonry can be also done without a sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Reduction factor for job site tests (β – factor)	See Annex C 1
Characteristic resistance for tension and shear loads	See Annex C 1
Characteristic resistance for bending moments	See Annex C 1
Displacement under shear and tension loads	See Annex C 1
Edge distances and spacing	See Annex B 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy
	requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011), these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement safety in use, the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

Appendix 2/15

3.5 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources, no performance was determined for this product.

3.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (ELI) No. 205/2014) rivers in the following table and the contract of the

(EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Injection anchors for	For fixing and/or supporting to		
use in masonry	masonry, structural elements		4
	(which contributes to the stability	-	ı
	of the works) or heavy units		

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European Technical Assessment.

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague ². The results of the factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

The manufacturer shall, on the basis of a contract, involve a body which is notified for the tasks referred to in section 4 in the field of anchors in order to undertake the actions laid down in section 5.2. For this purpose, the control plan referred to in this section and section 5.2 shall be handed over by the manufacturer to the notified body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European Technical Assessment.

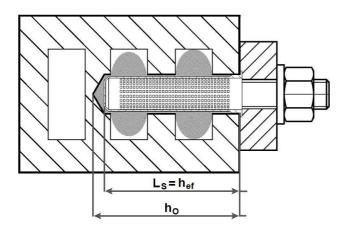
Official Journal of the European Communities L 073 of 14.03.1997

² The control plan is a confidential part of the documentation of the European technical assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

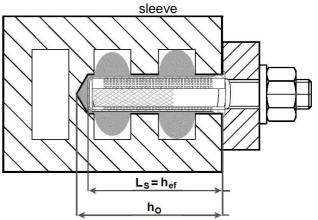
Appendix 3/15

5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

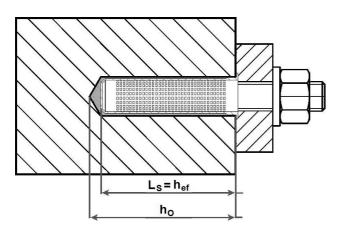

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled, the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.

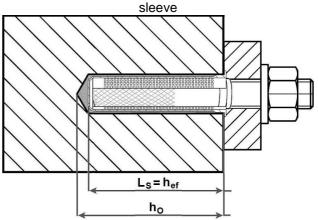

Appendix 4/15

Installation in hollow or perforated brick masonry

Installation of anchor rod with sieve sleeve



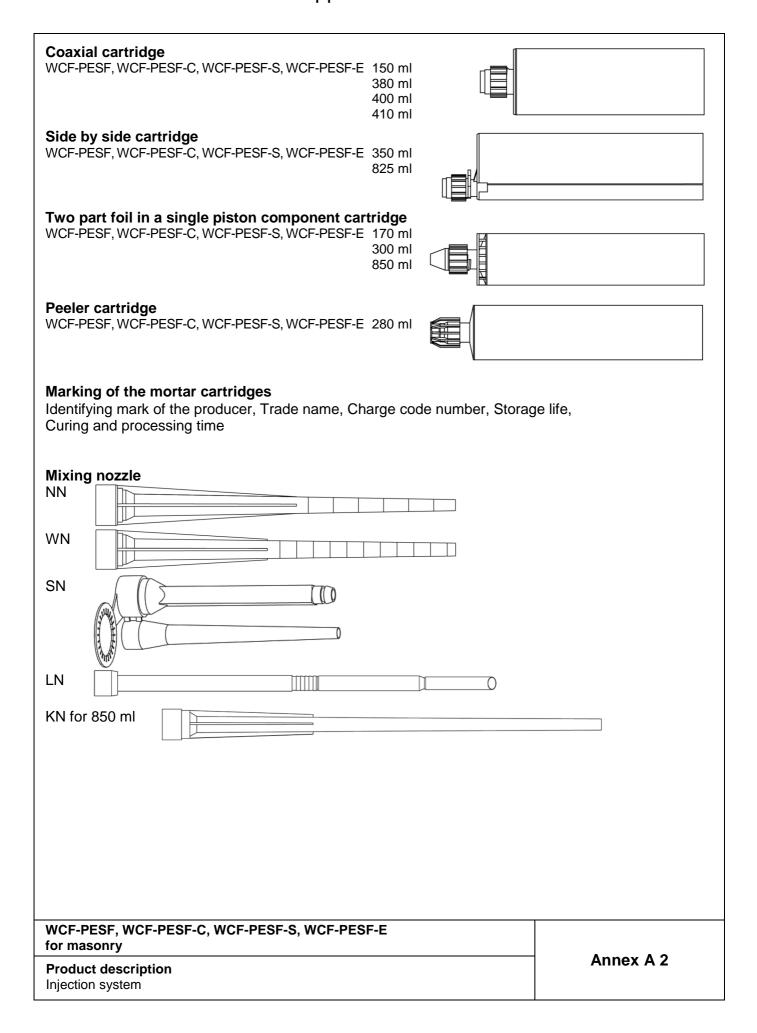
Installation of internal threaded socket with sieve



Installation in solid brick masonry

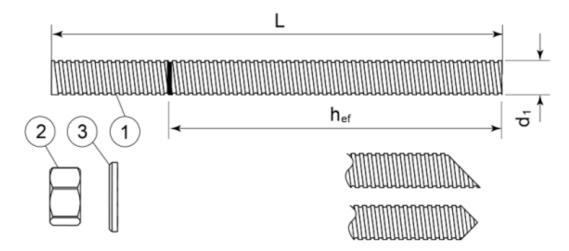
Installation of anchor rod with or without sieve sleeve

Installation of internal threaded socket with sieve


L_s = length of the sieve sleeve

hef = effective setting depth

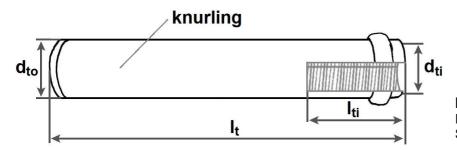
 h_0 = bore hole depth


WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E	
for masonry	

Appendix 5/15

Appendix 6/15

Threaded rod M8, M10, M12


Standard commercial threaded rod with marked embedment depth

Part	Designation	Material			
Steel,	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811				
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 5.8, 8.8, 10.9* EN ISO 898-1			
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
Stainl	ess steel				
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506			
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
High corrosion resistant steel					
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1			
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Product description Threaded rod and materials	Annex A 3

Internal threaded socket

Marking:

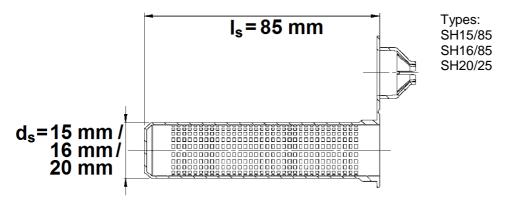

Identifying mark of the producer "m" Size of internal thread e.g. M8

Table A1: Dimensions of internal threaded socket

Table 7111 Billionelle et iliterral tirreadea ecollet				
Internal threaded socket	Inner diameter	Outer diameter	Length of the internal thread	Total length
	d _{ti}	d _{to} [mm]	I _{ti} [mm]	I _t [mm]
12 x 80	M8	12	30	80
14 x 80	M10	14	30	80
16 x 80	M12	16	30	80

Designation	Material
Internal threaded socket	strength class 5.8 EN ISO 898-1, galvanized ≥ 5 µm EN ISO 4042

Sieve sleeve

Designation	Material
Sieve sleeve	Polypropylene

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Product description	Annex A 4
Internal threaded socket and materials	
Sleeve	

Appendix 8/15

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads

Base materials

- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (Use category c), according to Annex B2 to B3.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchorages may be determined by job site tests according to ETAG 029, Annex B and under consideration of the β-factor to Annex C1, Table C1.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

- T_a: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T_b: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

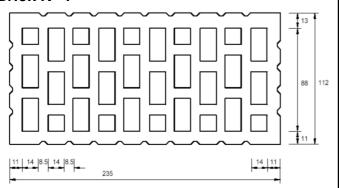
- Structures subject to dry internal conditions (zinc coated steel)

Use categories in respect of installation and use:

- Category d/d
- Category w/d

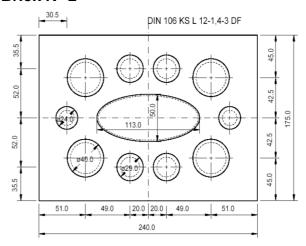
Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the ETAG 029, Annex C, Design method A, under the responsibility of an engineer experienced in anchorages and masonry work.

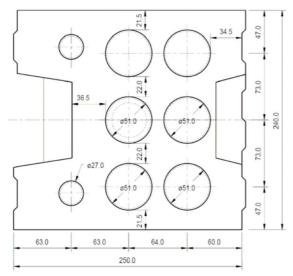

Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Intended use Specifications	Annex B 1


Table B1: Types and dimensions of block and bricks

Brick N° 1


Hollow clay brick HLz 12-1,0-2DF according to EN 771-1 length/width/height = 235 mm/112 mm/115 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1,0 \text{ kg/dm}^3$

Brick N° 2

Hollow sand lime brick KSL 12-1,4-3DF according to EN 771-2 length/width/height = 240 mm/175 mm/113 mm $f_b \geq$ 12 N/mm² / $\rho \geq$ 1,4 kg/dm³

Brick N° 3

Hollow sand lime brick KSL 12-1,4-8DF according to EN 771-2 length/width/height = 250 mm/240 mm/237 mm $f_b \geq 12 \ N/mm^2/\ \rho \geq 1,4 \ kg/dm^3$

Brick N° 4

Solid clay brick Mz 12-2,0-NF according to EN 771-1 length/width/height = 240 mm/116 mm/71 mm $f_b \geq 12 \ N/mm^2 \ / \ \rho \geq 2,0 \ kg/dm^3$

Brick N° 5

Solid sand lime brick KS 12-2,0-NF according to EN 771-2 length/width/height = 240 mm/115 mm/70 mm $f_b \geq 12 \ N/mm^2 \ / \ \rho \geq 2,0 \ kg/dm^3$

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry

Intended use

Brick types and properties

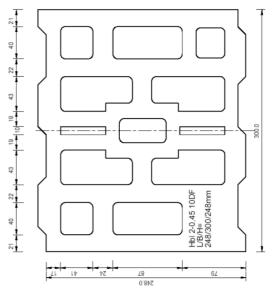
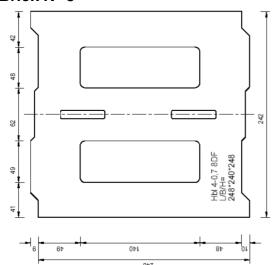
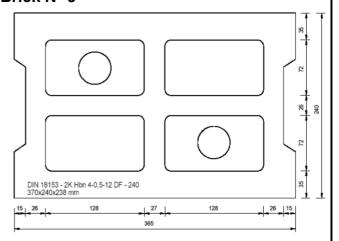

Annex B 2

Table B2: Types and dimensions of block and bricks

Brick N° 6


Hollow clay brick HLzW 6-0,7-8DF according to EN 771-1 length/width/height = 250 mm/240 mm/240 mm $f_b \ge 6 \text{ N/mm}^2 / \rho \ge 0.8 \text{ kg/dm}^3$

Brick N° 7

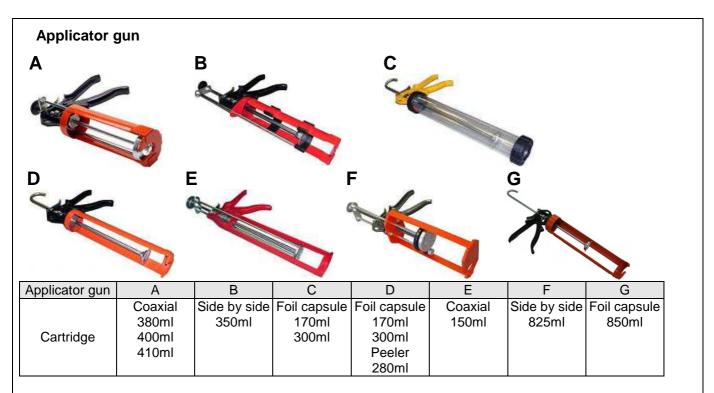

Lightweight concrete hollow block HbI 2-0,45-10DF according to EN 771-3 length/width/height = 250 mm/300 mm/248 mm $f_b \ge 2,0 \text{ N/mm}^2$ / $\rho \ge 0,45 \text{ kg/dm}^3$

Brick N° 8

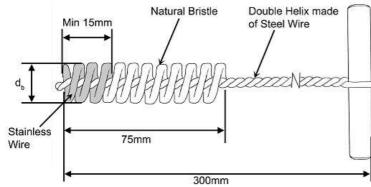
Lightweight concrete hollow block HbI 4-0,7-8DF according to EN 771-3 length/width/height = 250 mm/240 mm/248 mm $f_b \geq 4,0 \ N/mm^2 \ / \ \rho \geq 0,7 \ kg/dm^3$

Brick N° 9

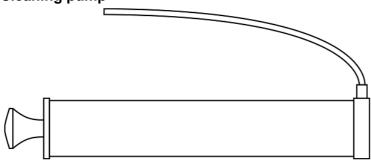
Concrete masonry unit Hbn 4-12DF according to EN 771-3 length/width/height = 370 mm/240 mm/238 mm $f_b \ge 4 \text{ N/mm}^2 / \rho \ge 1,2 \text{ kg/dm}^3$


WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry

Intended use


Brick types and properties

Annex B 3


Appendix 11/15

Cleaning brush

Cleaning pump

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Intended use	Annex B 4
Applicator guns	
Cleaning brush, Cleaning pump	

Appendix 12/15

Installation instructions 2. Use the Cleaning pump to **1.** Drill the hole to the correct diameter and depth using a rotary clean the hole. percussive machine. 3. Use the Cleaning brush to clean **4.** Use the Cleaning pump to the hole. Diameter of Cleaning brush clean the hole. according to Table B3. **5.** Use the Cleaning brush to clean **6.** Use the Cleaning pump to clean the hole. the hole. Diameter of Cleaning brush according to Table B3. 7. If used in hollow or perforated 8. Once the hole is prepared, remove the screw cap from the brick masonry: cartridge. Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material. 9. Attach the mixer nozzle and place **10.** Dispense the first part to the cartridge in the applicator gun. waste, until an even colour is achieved. 11. Remove any remaining water 12. Insert the nozzle to the far from the hole. end of the hole (using extension tubing if necessary) and inject the resin, withdrawing the nozzle/tube as the hole fills. 13. If used in hollow or perforated **14.** Immediately insert the fixing brick masonry: (steel element) slowly and with a slight twisting motion. Remove Insert mixer nozzle to the end of the excess resin from around the perforated sleeve and completely fill mouth of the hole. the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills. **15.** Leave the fixing undisturbed until **16.** Attach the fixture and tighten the cure time (see Table B5) has the nut. Maximum installation torque moment according to elapsed.

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Intended use Installation instructions	Annex B 5

Table B3.

Appendix 13/15

Table B3: Installation parameters in solid and hollow masonry

Anchor type			Anchor rod				Inte	rnal	threaded	socket				
Size			M8	M10	M12	М	8	M ⁻	10	M12	M	8	M10	M12
Internal threaded socket	$d_{to}xI_{t}$	[mm]	-	-	-	•				-	12>	(80	14x80	16x80
Sieve sleeve	Is	[mm]	-	-	-	8	5	8	5	85	8	5	85	85
Sieve sieeve	ds	[mm]	-	-	-	15	16	15	16	20	15	16	20	20
Nominal drill hole diameter	d_0	[mm]	15	15	20	15	16	15	16	20	15	16	20	20
Diameter of	dь	[mm]	20±1	20±1	22±1	20	1±1	20	1 ±1	22±1	20	±1	22±1	22±1
cleaning brush	uь	[111111]	20-	20-	22-	20	,	20)=·	22-	20		22-	22-
Depth of the drill hole	h ₀	[mm]	90											
Effective anchorage	h _{ef}	[mm]				85							80	
depth	rier	[,,,,,,]				00								
Diameter of clearance	d _f ≤	[mm]	9	12	14		9	1	2	14	ç	,	12	14
hole in the fixture	ur =		3	12	14	,	9	'	_	14		,	14	14
Torque moment T	inst ≤	[Nm]							2					

Table B4: Edge distances and spacing

Table 64:	Table B4: Edge distances and spacing									
	Anchor rod									
		M8			M10		M12			
Base material ¹⁾	r = Cmin	= Smin =	⊥ = Smin⊥	r = Cmin		⊥ = Smin⊥	r = Cmin	= Smin =	S _{cr} ⊥ = S _{min} ⊥	
	\mathbf{c}_{cr}	S _{cr} = :	\mathbf{S}_{cr}	\mathbf{C}_{cr}	Scr II	S _{cr} ⊥ :	Ccr	Scr II :	S _{CF} -	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N° 1	100	235	115	100	235	115	120	235	115	
Brick N° 2	100	240	113	100	240	113	120	240	113	
Brick N° 3	100	250	237	100	250	237	120	250	237	
Brick N° 4	128	255	255	128	255	255	128	255	255	
Brick N° 5	128	255	255	128	255	255	128	255	255	
Brick N° 6	100	250	240	100	250	240	120	250	240	
Brick N° 7	100	250	248	100	250	248	ı	-	-	
Brick N° 8	100	250	248	100	250	248	120	250	248	
Brick N° 9	100	370	238	100	370	238	120	370	238	
-	•		Int	ernal threa	ded socke	et		-		
		M8			M10			M12		
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	S _{or} L = S _{min} L	C _{cr} = C _{min}	Scr II = Smin II	Sα⊥ = Smin⊥	C _{cr} = C _{min}	Scr II Smin II	S _{or} L = S _{min} L	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N° 1	100	235	115	120	235	115	120	235	115	
Brick N° 2	100	240	113	120	240	113	120	240	113	
Brick N° 3	-	-	-	120	250	237	120	250	237	
Brick N° 4	128	255	255	128	255	255	128	255	255	
Brick N° 5	128	255	255	128	255	255	128	255	255	
Brick N° 6	100	250	240	120	250	240	120	250	240	
Brick N° 7	100	250	248	120	250	248	120	250	248	
Brick N° 8	-	-	-	120	250	248	120	250	248	
Brick N° 9	100	370	238	120	370	238	120	370	238	

¹⁾ Brick N° according to Annex B 2 and B 3

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Intended use Installation parameters	Annex B 6

Table B5.1: Minimum curing time WCF-PESF

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	145
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	1	+25 to +30	40
+30	4	+30	35

Table B5.2: Minimum curing time WCF-PESF-C

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	5	-10 to -5	4 hours
111111 +3	5	-5 to +5	125
+5 to +10	3,5	+5 to +10	60
+10 to +20	2	+10 to +20	40
+20 to +25	1,5	+20 to +25	20
+25 to +30	1	+25 to +30	15
+30	'	+30	10

Table B5.3: Minimum curing time WCF-PESF-S

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	10	-5 to +5	180
+5 to +10	5	+5 to +10	60
+10 to +20	3	+10 to +20	40
+20 to +25	2,5	+20 to +25	20
+25 to +30	2	+25 to +30	15
+30	2	+30	10

Table B5.4: Minimum curing time WCF-PESF-E

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +10	30	min +10	5 hours
+10 to +20	15	+10 to +20	5 Hours
+20 to +25	10	+20 to +25	145
+25 to +30	7,5	+25 to +30	85
+30 to +35	5	+30 to +35	50
+35 to +40	3,5	+35 to +40	40
+40 to +45	2.5	+40 to +45	35
+45	2,5	+45	12

T work is typical gel time at highest temperature

T load is set at the lowest temperature

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Intended use Working and curing time	Annex B 7

Table C1: Characteristic resistance under tension and shear loading

Base material	Anchor rods N _{Rk} = V _{Rk} [kN] 1)			Internal threaded sockets N _{Rk} = V _{Rk} [kN] ¹⁾			
	M8	M10	M12	М8	M10	M12	
Brick N° 1	2,5	2,0	2,0	1,5	2,5	2,5	
Brick N° 2	0,75	1,2	0,5	0,6	0,75	0,9	
Brick N° 3	0,75	1,2	0,5	-	0,75	0,4	
Brick N° 4	1,5	1,5	3,0	2,0	3,0	4,0	
Brick N° 5	0,75	0,9	1,5	2,0	1,5	0,9	
Brick N° 6	1,2	1,2	0,9	0,9	1,5	0,6	
Brick N° 7	0,6	0,3	-	0,5	0,3	0,75	
Brick N° 8	0,6	1,5	1,2	-	0,4	0,6	
Brick N° 9	2,5	1,5	2,5	0,6	1,2	0,9	

¹⁾ For design according ETAG 029, Annex C: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to ETAG 029, Annex C For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to ETAG 029, Annex C

Table C2: Characteristic bending moment

able 921 Griding Correction Bornaring Monitorit								
Size			M8	M10	M12			
Steel grade 5.8	$M_{Rk,s}$	[N.m]	19	37	66			
Steel grade 8.8	$M_{Rk,s}$	[N.m]	30	60	105			
Steel grade 10.9	$M_{Rk,s}$	[N.m]	37	75	131			
Stainless steel grade A2-70, A4-70	$M_{Rk,s}$	[N.m]	26	52	92			
Stainless steel grade A4-80	$M_{Rk,s}$	[N.m]	30	60	105			
Stainless steel grade 1.4529 strength class 70	$M_{Rk,s}$	[N.m]	26	52	92			
Stainless steel grade 1.4565 strength class 70	$M_{Rk,s}$	[N.m]	26	52	92			

Table C3: Displacements under tension and shear load

Base material	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δ _{V∞} [mm]
Solid bricks	N //1 / · · ·)	0,6	1,2	1,0 ¹⁾	1,5 ¹⁾
Perforated and hollow bricks	$N_{Rk} / (1,4 \cdot \gamma_M)$	0,14	0,28	1,0 ¹⁾	1,5 ¹⁾

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to ETAG 029, Annex B

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	N° 7	N° 8	N° 9
β - factor	0,62	0,28	0,22	0,48	0,26	0,43	0,42	0,36	0,60

WCF-PESF, WCF-PESF-C, WCF-PESF-S, WCF-PESF-E for masonry	
Performances	Annex C 1
Characteristic resistance, displacement	
β-factors for job site testing under tension load	